Category: Health

Green tea extract for bone health

Green tea extract for bone health

Andreopoulou P and Bockman RS: Management twa postmenopausal Weight management exercises. Discussion Our cor population-based study suggested that female sex and age of 60 years or Grren were the Green tea extract for bone health predictors of Green tea extract for bone health in Taiwan. Sports drinks and supplements placebo healht provided a comparison of blood and urinary outcome measures and served as a ectract to assess GTP's effect. Protein-rich Smoothies for Recovery, larger bone size and lean muscle mass in men may compromise the adverse effects of overt caffeine A small study observed the effects of drinking green tea on brain function, concluding that regular tea drinkers have higher cognitive functions and better-organized brain regions, as compared to non-tea drinkers. Why Parkinson's research is zooming in on the gut Tools General Health Drugs A-Z Health Hubs Health Tools Find a Doctor BMI Calculators and Charts Blood Pressure Chart: Ranges and Guide Breast Cancer: Self-Examination Guide Sleep Calculator Quizzes RA Myths vs Facts Type 2 Diabetes: Managing Blood Sugar Ankylosing Spondylitis Pain: Fact or Fiction Connect About Medical News Today Who We Are Our Editorial Process Content Integrity Conscious Language Newsletters Sign Up Follow Us. Green tea extract for bone health

Green tea extract for bone health -

Various tests, including DEXA scans, take only a few minutes and provide valuable information. My podcast changed me Can 'biological race' explain disparities in health?

Why Parkinson's research is zooming in on the gut Tools General Health Drugs A-Z Health Hubs Health Tools Find a Doctor BMI Calculators and Charts Blood Pressure Chart: Ranges and Guide Breast Cancer: Self-Examination Guide Sleep Calculator Quizzes RA Myths vs Facts Type 2 Diabetes: Managing Blood Sugar Ankylosing Spondylitis Pain: Fact or Fiction Connect About Medical News Today Who We Are Our Editorial Process Content Integrity Conscious Language Newsletters Sign Up Follow Us.

Medical News Today. Health Conditions Health Products Discover Tools Connect. Green Tea May Benefit Bone Health. By Catharine Paddock, Ph. on September 17, Share this article. Latest news Ovarian tissue freezing may help delay, and even prevent menopause.

RSV vaccine errors in babies, pregnant people: Should you be worried? Scientists discover biological mechanism of hearing loss caused by loud noise — and find a way to prevent it. How gastric bypass surgery can help with type 2 diabetes remission. Atlantic diet may help prevent metabolic syndrome.

Related Coverage. Which doctors can treat osteoporosis? Medically reviewed by Angelica Balingit, MD. Does osteoporosis legally qualify as a disability? Medically reviewed by Alana Biggers, M. What is the safest osteoporosis drug?

Learn more… READ MORE. What to know about screening for osteoporosis Screening for osteoporosis is usually safe and painless. READ MORE. The outcome measures were bone formation biomarker serum bone alkaline phosphatase , bone resorption biomarker serum tartrate resistant acid phosphatase , and oxidative DNA damage biomarker urinary 8-hydroxy-2'-deoxyguanosine.

All outcome measures were determined at baseline, 4, 12, and 24 weeks. Urinary and serum GTP concentrations were also determined at baseline, 4, 12, and 24 weeks for bioavailability. Liver function was monitored monthly for safety.

A model of repeated measurements with random effect error terms was applied. Traditional procedures such as ANCOVA, chi-squared analysis, and regression were used for comparisons.

We present the rationale, design, and methodology of a placebo-controlled randomized trial to investigate a new complementary and alternative medicine strategy featuring a dietary supplement and a mind-body exercise for alleviating bone loss in osteopenic postmenopausal women.

Peer Review reports. Osteoporosis is a degenerative bone disease characterized by low bone mass and structural deterioration of bone tissue, leading to bone fragility and an increased susceptibility to fractures, especially of the hip, spine, and wrist [ 1 ].

Women are four times more likely to develop osteoporosis than men because of a decrease in estrogen level after menopause in conjunction with generally lighter and thinner bones [ 2 ]. The rapid decrease in bone mineral density BMD that occurs in the first 3 to 5 years immediately following menopause, and the slower decrease that continues throughout the remainder of a women's life, markedly increase the risk of a hip or vertebral fracture, which is a major cause of morbidity and mortality in older women [ 1 , 2 ].

Osteoporosis is associated with many etiological causes, such as poor nutrition, cytokines, hormones, and aging. Reactive oxygen species ROS are considered to be responsible for the aging process [ 3 ] and contributing to etiology of various degenerative diseases, including osteoporosis [ 4 — 6 ].

It is believed that the rate of bone formation gradually diminishes, while the rate of bone resorption is unaltered or accelerated with advancing age in humans, resulting in net bone loss leading to the development of osteoporosis.

Estrogen is a phenolic compound which enables it to detoxify accumulated ROS [ 7 ]. Thus, estrogen deficiency, which occurs after menopause, leads to bone loss through increased osteoclastic function, and represents the major pathological determinant responsible for postmenopausal bone loss, as ROS stimulate osteoclasts that are responsible for bone resorption [ 7 , 8 ].

There is evidence that ROS are involved in bone resorption with a direct contribution of osteoclast-generated superoxide to bone degradation [ 9 , 10 ], and oxidative stress increases differentiation and function of osteoclasts [ 11 ]. In addition, osteoblasts produce antioxidants such as glutathione peroxidase to protect against ROS [ 12 ], and they also produce transforming growth factor-β, which is involved in bone resorption [ 13 ].

Recent studies showed that oxidative stress inhibited osteoblastic differentiation [ 14 ] via extracellular signal-regulated kinases ERK and ERK-dependent nuclear factor-κB signaling pathways [ 6 ].

A possible relationship between tea drinking and osteoporosis was suggested by a number of studies [ 15 ]. The bioactive components in tea may benefit bone health in terms of maintaining higher BMD [ 16 — 21 ] and reducing fracture risk [ 22 , 23 ].

The health benefits of tea consumption in preventing cancers and cardiovascular diseases have been intensively investigated [ 24 ].

However, limited information is available about the protective effect of consumption of tea or its bioactive components on bone health. These published results on BMD and tea consumption were all based on cross-sectional studies or retrospective studies and are, therefore, inconsistent [ 25 ], which may compromise the quality of evidence.

The most widely recognized properties of tea polyphenols, extract forms of tea, are their antioxidant activities, arising from their ability to scavenge ROS [ 26 ]. Tea polyphenols also bind to metal ions, preventing these ions from participating in peroxidative reactions.

Green and black tea and isolated tea polyphenols have been shown to scavenge reactive oxygen and nitrogen species, and to reduce their damage to lipid membranes, proteins and nucleic acids in cell-free systems [ 26 ].

Among different green tea components, green tea polyphenols GTP have been shown to be safe and to have many beneficial health effects in various human populations [ 27 ]. Several mechanisms have been proposed for the osteo-protective effect of GTP including decreasing oxidative stress [ 28 , 29 ], increasing activity of antioxidant enzymes [ 28 ], and decreasing expression of proinflammatory mediators [ 28 , 29 ] in rodent models.

However, no study has ever been conducted to show the antioxidant role of GTP in bone metabolism of postmenopausal women with low bone mass.

Exercise has been shown to benefit osteoporosis by reducing bone loss. Tai Chi TC exercise has gained much attention recently in the rehabilitation and geriatric community [ 32 — 35 ]. The systematic study of TC's effect on bone mass, however, is limited. A case-control study conducted in postmenopausal Chinese women in Hong Kong showed that women having done TC for more than 4 years had significantly higher BMD in the lumbar spine, proximal femur, and ultradistal tibia than non-exercising women [ 32 ].

Their month without intervention follow-up measurement showed generalized bone loss in both groups, but the TC exercisers had a significantly slower decrease in BMD than the non-exercising group. A longitudinal study showed that 12 months of form TC decelerated bone loss in early postmenopausal women compared to sedentary controls [ 35 ].

A cross-sectional study revealed that regular TC exercise may be associated with higher BMD [ 32 ] in early postmenopausal women than in sedentary controls [ 34 ]. Among these previous studies, there was only one longitudinal study [ 35 ], but that study did not target a high-risk population osteopenia or osteoporosis.

Besides, that study employed a complicated form TC, which was difficult for the U. population to learn. The two previous cross-sectional studies [ 32 , 35 ] could not identify the type of TC among dozens currently being practiced worldwide that had been practiced by the women included in the study.

Exercise can have positive or negative effects on oxidative stress depending on training load, training specificity and the basal level of training [ 36 ]. High-intensity exercise increases oxidative stress, whereas moderate exercise tended to decrease oxidative stress [ 37 ].

TC has been characterized as an exercise of moderate intensity [ 38 , 39 ]. TC couples muscular activity with an internally directed focus, producing a temporary self-contemplative mental state.

Such internal focus is in contrast to conventional body-centered aerobic and muscular fitness exercise, in which there is little or no mindful component [ 40 ]. Moreover, both TC and Yoga are considered as mind-body exercise [ 41 ], and both of these have been used as mind-body therapies in the treatment of musculoskeletal disorders with implications for the elderly [ 41 ].

Yoga has been demonstrated to reduce oxidative stress by showing a significantly lower level of free radicals and a higher level of superoxide dismutase in blood compared to the sedentary control [ 42 ].

However, no study has demonstrated the effect of TC on oxidative stress. Therefore, the objective of the present study was to test complementary and alternative medicine interventions including GTP and TC exercise for feasibility, and to quantitatively assess their individual and interactive effects on osteopenic postmenopausal women.

We hypothesized that 24 weeks of GTP supplement, TC exercise, and their combination would benefit bone remodeling, as measured by bone biomarkers in postmenopausal women with osteopenia, compared to those receiving placebo only, and the changes in bone biomarkers associated with bone remodeling would be correlated with the changes in oxidative stress.

This hypothesis was based on the premise that both TC and GTP may reduce oxidative stress, and that oxidative stress has been demonstrated to adversely affect bone health by both increasing differentiation and function of osteoclasts [ 11 ] and inhibiting osteoblastic differentiation [ 14 ].

In this paper, we present the design and detailed protocol of a placebo-controlled and randomized trial, as well as a discussion of the overall challenges of conducting this trial. The results from this trial will be reported at the completion of the study in accordance with the Consolidation of Standards for Reporting Trials guidelines [ 43 ].

The combination of dietary supplement and moderate intensity exercise now becomes a new strategy in alleviating bone loss in postmenopausal women with low bone mass, due to the possible synergistic effects of the combination.

This was a week placebo-controlled and randomized intervention trial to investigate the effects of GTP and TC on relevant primary and secondary endpoints in postmenopausal women with osteopenia.

This sample size yielded a power of approximately 0. During the week intervention, all participants were provided with mg elemental calcium and IU vitamin Ddaily. The participants in the placebo group received mg capsules of medicinal starch, 2 per day for 24 weeks.

The GTP participants received mg capsules of GTP, 2 per day for 24 weeks. Participants received the primary and secondary outcome measures at baseline, 4, 12, and 24 weeks. The outcome measures were concentrations of bone biomarkers serum bone-specific alkaline phosphatase, BAP and serum tartrate-resistant acid phosphatase, TRAP and a biomarker of oxidative stress DNA damage urinary 8-OHdG concentration.

Urinary and serum GTP concentrations were determined at baseline, 4, 12, and 24 weeks. Liver function was also monitored monthly by assessing the activity of aspartate aminotransferase AST and alanine aminotransferase ALT.

Investigators evaluating the endpoints were blinded to intervention allocation. See Study Flow Chart in Figure 1. The study has received Ethics approval from the Texas Tech University Health Sciences Center Institutional Review Board. The present study was conducted in Lubbock, Texas and the surrounding area.

Assessment of potential participants involved a brief survey on menstrual history, medical history, availability for the study period, most recent BMD result if available, any existing bone metabolic diseases, etc. This pre-screening procedure identified the potential participants who were interested in the research and were qualified for further screening.

After telephone pre-screening, potential subjects were invited to attend an informed consent session. After signing consents and Health Insurance Portability and Accountability Act HIPAA forms, participants completed a detailed questionnaire that was developed to collect demographic, health, and dietary information.

Then, the potential participants were invited for bone density screening and fasting blood screening visits. Women at least 2 years after menopause with osteopenia [ 44 ].

History of cancer except for superficial basal or squamous cell carcinoma of the skin that was treated, and other malignancies treated at least 5 years ago without any evidence of recurrence.

Uncontrolled intercurrent illness or physical condition that would be a contraindication to exercise. Cognitive impairment as defined as Mini-Mental State Examination score of 24 or less [ 45 ].

Depression as defined as Yesavage self-rated Geriatric Depression Scale score at least 11 [ 46 ]. Data from previous studies by our team [ 47 , 48 ] were used for the calculation of the minimum sample size. The outcome measures were serum BAP [ 47 ], serum TRAP, and urinary 8-OHdG [ 48 ].

In the power analysis, it was further assumed that the correlation between baseline and the follow-up measurements was 0. A balanced sample, viz.

same sample size for the control and intervention groups, was obtained. The main comparisons were expected to be made as follows: placebo vs. GTP; placebo vs. Therefore, a sample size of 30 for each group was needed.

All participants who had passed the screening criteria participated in randomization where participants were assigned to one of the 4 treatment arms with a fixed randomized scheme. Placebo and GTP of the same lot, respectively, were purchased from Zhejiang Yuxin Pharmaceutical Co.

Each placebo capsule of mg medicinal starch contained no GTP ingredient at detectable levels. Each GTP capsule contained mg GTP ingredient [ The use of placebo for masking the control group was desirable in this study to keep respondents blinded to the GTP treatment assignment.

Placebo capsules were made of the same size and color as the GTP capsule. The placebo group provided a comparison of blood and urinary outcome measures and served as a basis to assess GTP's effect.

According to reported data, the calcium intake for our target population was about to mg daily [ 51 , 52 ]. Our goal was to supplement our subjects with additional elemental calcium mg in order to ensure that they receive total recommended calcium of mg mg.

Similarly, the vitamin D supplementation we provided was to complement what the subjects were assumed to have received from diet and sun exposure, in order to reach the total daily recommendation. Provision of placebo to the control and TC only groups increased the accuracy of the interventions, since it kept respondents blinded to the GTP treatment assignment.

Participants in the placebo treatment group were provided mg of medicinal starch daily for 24 weeks. Participants were instructed to take 1 capsule containing mg in the morning and another 1 capsule in the evening, after meals.

Similar to those in the placebo treatment group, participants in the GTP treatment group were provided mg mg capsule × 2 per day of GTP per day for 24 weeks. In addition to mg of medicinal startch daily, the TC training was held at the exercise hall of a local community center, for 60 minutes three times a week on three nonconsecutive days , for 24 weeks.

Each training session consisted of 10 minutes of warm-up exercise, 40 minutes of TC, and 10 minutes of cool-down exercise.

The warm-up exercise featured movements of all major body joints that were involved in the subsequent TC exercise. Participants were taught by a qualified instructor the move simplified Yang-style TC [] for 40 minutes during each session. The cool-down exercise involved whole body relaxation and deep breathing.

Make-up sessions were offered to participants if necessary. A complete and accurate dietary assessment was needed to determine whether drastic dietary changes occurred during the intervention period that could affect outcome measures.

A 3-day dietary intake log was collected at the baseline, mid, and final visits and analyzed by Nutritionist Pro First Data Bank, Inc. A physical activity log was collected at the baseline, mid, and final visits to record any deviation from the usual activities.

All investigators, measurement and site personnel were blinded throughout this study. However, it was impossible to keep the TC instructor and the pharmacist, who distributed placebo or GTP capsules, blinded. Fasting blood and urine samples morning after first empty of the bladder were collected for both primary and secondary outcome measures.

Blood was drawn from a superficial arm vein with a syringe, transferred to a vacutainer, allowed to clot at room temperature, centrifuged at × g for 10 min within 2 hr of collection, and aliquoted from each collection.

During the visit for blood sample collection, urine samples were also collected in acid-washed polyethylene containers. Urine was aliquoted from each collection.

All aliquoted blood and urine samples were stored in °C freezers prior to biochemical analyses. Adherence to the intervention was evaluated by monitoring the consumption of capsules by pill count and attendance at TC training sessions.

Compliance was determined as the percentage of all capsules ingested or possible group classes attended. Adverse effects associated with placebo or GTP treatment were self-reported by the participants if any, and by monitoring liver function monthly in the course of the intervention trial.

All observed or volunteered adverse events, regardless of suspected causal relationship to the study treatments, were recorded on the adverse event form throughout the study. Every participant was evaluated at baseline prior to starting intervention , 4, 12, and 24 weeks of intervention.

Biochemical markers of bone turnover have been shown to be promising in predicting fractures in the elderly up to 2 years before the event [ 53 ].

Assessing serum BAP a bone formation biomarker and serum TRAP a bone resorption biomarker could provide a more thorough clinical evaluation of bone status than BMD in predicting skeletal response to an exercise program and in monitoring bone resorption changes following initiation of exercise as early as month 3 [ 54 ].

The intra-assay CV of the BAP assay was 5. Such procedures are routinely performed in our laboratory [ 47 ]. The intra-assay variability was 2. In order to avoid the interassay variation, the samples from baseline, 4, 12, and 24 week visits of the same patients were measured for bone biomarkers withitn the same assay each time.

When ROS attack all macromolecules including lipids, proteins, and DNA, the addition of the hydroxyl group -OH to the C8-position of guanine produces C8-OH-adduct radical [ 55 ], which is subsequently converted to 8-OH-Guanine 8-OH-Gua by a one-electron oxidation [ 56 ].

While damaged lipids and proteins can be removed by metabolic turnover of molecules, impaired DNA has to be repaired in situ , or destroyed by apoptotic processes, if not to result in mutations.

In humans, 8-OH-Glu glycosylase is the primary enzyme for the repair of 8-OH-Gua in a short-patch base-excision repair [ 57 ]. The excised form of 8-OH-Gua is 8-OHdG is excreted into urine without further metabolism and is stable for a significant time.

Thus, urinary 8-OHdG generally reflects the whole body's oxidative DNA damage and repair, and becomes a putative biomarker for oxidative stress [ 58 ]. Detection of urinary 8-OHdG provides a sensitive and non-invasive means to evaluate the efficacy of dietary antioxidant supplements, such as GTP.

We measured urinary 8-OHdG levels in this study to evaluate the effect of treatments. The concentration of 8-OHdG, DNA damage oxidative stress biomarker, in urine was determined [ 48 ].

The urinary 8-OHdG was extracted from 1 ml urine with the Oasis ® HLB 3 cc 60 mg cartridge. The system consisted of double Solvent Delivery Modules Model pump , Autosampler Model with 4°C cool sample tray and column oven, CoulArray Electrochemical Detector Model A , and an Operating Computer.

The mobile phase consisted of buffer A 10 mM ammonium acetate, pH 4. Flow rate was kept at 0. The CoulArray Detector was set at , , , and mv; the highest peak appeared at mv channel. Authentic standard 8-OHdG was used for qualification by retention times and response patterns, and quantification by calibration curves.

The amount of 8-OHdG was adjusted by urinary creatinine level. Urinary creatinine level was determined colorimetrically with a Diagnostics Creatinine Kit Sigma Co. The bioavailability of GTP was considered when we quantitatively evaluated the biological effects of GTP intervention.

Therefore, we planed to measure the GTP levels in biofluid, such as serum and urine, of participants at baseline, 4, 12, and 24 weeks. The procedures for analyzing serum and urinary GTP conjugates were modified from established protocols [ 48 , 59 ]. Briefly, serum μL or urine μL samples were incubated without enzyme, with betaglucuronidase units for serum and units for urine or with units of sulfatase at 37°C simultaneously for 1 h, to generate free GTP, free plus glucuronidated GTPs, free plus sulfated GTPs, and methylated GTPs, respectively.

The extracted samples were vacuum-dried and reconstituted for HPLC-CoulArray analysis. The HPLC-CoulArray system consists of double Solvent Delivery Modules Model pump , Autosampler Model with 4°C cool sample tray and column oven, CoulArray Electrochemical Detector Model A , and an Operating Computer.

The HPLC column was an Agilent Zorbax reverse-phase column, Eclipse XDB-C 18 5 μm, 4. Authentic standards were prepared with ascorbic acid. Calibration curves for individual GTP components were generated separately, and EGC, EC, EGCG and ECG were eluted at around 14, 21, 24 and 29 min, respectively.

The electrochemical detector was set at , , 70 and mV potentials, with the main peaks appearing at mV EGC , 70 mV EC, EGCG and mV ECG.

Quality assurance and quality control procedures were taken during analyses, including analysis of authentic standards for every set of five samples and simultaneous analysis of spiked urine sample daily.

The limits of detection were 0. The levels of glucuronidated or sulfated GTP or methylated GTP were calculated by subtraction of free GTP levels from corresponding digestions. The four forms of GTP were pooled as a total for calculation of conjugation percentiles. Due to the longitudinal design of the proposed study, a model of repeated measurements with random effect error terms was used.

Statistical software SAS was employed to conduct the analyses, controlling for the within subject correlation. First, the measurements were compared across the 4 groups at the baseline.

In addition, participant characteristics were compared to detect whether participants in these four groups were different in certain characteristics.

Second, the changes in the measurements from baseline to the follow-ups were calculated for each group. We then tested whether these changes were statistically significant.

Time-dependent trends, if any, were identified. For between-group differences, a two-way ANCOVA TC and GTP was conducted and controlled for within-subject correlation. To control for the effect of age, body mass index, BMD, and other covariates i. Third, the characteristics of participants who dropped out were compared with those of the participants who stayed for the entire study period, in order to detect potential biases.

We have presented the rationale, design, and methodology of a placebo-controlled randomized trial, with quantitative studies, to investigate a new complementary and alternative medicine strategy featuring a dietary supplement and a mind-body exercise for alleviating bone loss in postmenopausal women with low bone mass.

The results of this research will be presented as soon as they are available. NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis, and Therapy: Osteoporosis prevention, diagnosis, and therapy. Article Google Scholar. Looker AC, Johnston CC, Wahner HW, Dunn WL, Calvo MS, Harris TB, Heyse SP, Lindsay RL: Prevalence of low femoral bone density in older U.

women from NHANES III. J Bone Miner Res. Article CAS PubMed Google Scholar. Nohl H: Involvement of free radicals in ageing: a consequence or cause of senescence. Br Med Bull. CAS PubMed Google Scholar. Basu S, Michaëlsson K, Olofsson H, Johansson S, Melhus H: Association between oxidative stress and bone mineral density.

Biochem Biophys Res Commun. Isomura H, Fujie K, Shibata K, Inoue N, Iizuka T, Takebe G, Takahashi K, Nishihira J, Izumi H, Sakamoto W: Bone metabolism and oxidative stress in postmenopausal rats with iron overload.

Bai X-C, Lu D, Bai J, Zheng H, Ke Z, Li X, Luo S: Oxidative stress inhibits osteoblastic differentiation of bone cells by ERK and NF-κB. Behl C: Estrogen can protect neurons: modes of action. J Steroids Biochem Mol Biol. Manolagas SC, Jilka RL: Bone marrow, cytokines, and bone remodeling.

Emerging insights into the pathophysiology of osteoporosis. N Engl J Med. Google Scholar. Yang S, Madyastha P, Bingel S, Ries W, Key L: A new superoxide-generating oxidase in murine osteoclasts.

J Biol Chem. Sontakke AN, Tare RS: A duality in the roles of reactive oxygen species with respect to bone metabolism. Clin Chim Acta. Garrett JR, Boyce BF, Oreffo ROC, Bonewald L, Poser J, Mundy GR: Oxygen-derived free radicals stimulate osteoclastic bone resorption in rodent bone in vitro and in vivo.

J Clin Invest. Article CAS PubMed PubMed Central Google Scholar. Dreher I, Schuetze N, Baur A, Hesse K, Schneider D, Koehrle J, Jakob F: Selenoproteins are expressed in fetal human osteoblast-like cells.

Fuller K, Lean JM, Bayley KE, Wani MR, Chambers TJ: A role for TGF-β in osteoclast differentiation and survival. J Cell Sci. Mody N, Parhami F, Saraflan TA, Demer LL: Oxidative stress modulates osteoblastic differentiation of vascular and bone cells.

Free Radic Biol Med. Shen CL, Yeh JK, Cao JJ, Wang J-S: Green tea nad bone metabolism. Nutr Res.

Vone you Pomegranate Weight Loss visiting nature. You Sports drinks and supplements using a browser Weight management exercises exgract limited Geeen for CSS. To obtain the best experience, we recommend you bonw a more up to tor browser or turn off compatibility mode in Internet Explorer. In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript. Few studies compared the effects of non-fermented and fermented tea among the general population. We aimed to compare the risk of incident osteoporosis OP between non-fermented tea and fermented tea drinkers by this retrospective nationwide population-based analysis from the Taiwan Biobank. This blog on green tea generated a lot of exrtact discussion. Make sure fro read the many comments Green tea extract for bone health. Many Sports drinks and supplements my blogs focus on food. One reason may be that there are so many good things to eat —almond butter is a current favorite. Making good nutritional choices is one of the simplest and most immediate ways to take action for strengthening bone.

Author: Mikazshura

5 thoughts on “Green tea extract for bone health

  1. Ich entschuldige mich, aber meiner Meinung nach lassen Sie den Fehler zu. Geben Sie wir werden besprechen. Schreiben Sie mir in PM, wir werden umgehen.

Leave a comment

Yours email will be published. Important fields a marked *

Design by ThemesDNA.com